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Abstract 

In this paper, we summarise the contributions from different disciplines to the current state 
of statistics education and describe examples of recent research. We restrict our analysis to 
the teaching of statistics at University level, although the situation we picture here can be 
extended to school statistics. We finally suggest some potential areas for priority research. 
Our objective is to provide information to those interested in the topic as well as to 
contribute to the development of research and practice in statistics education at an 
international level.  

 
Introduction 

As argued by Hacking (1990), the most decisive conceptual event of the twentieth century 
has been the discovery that the world is not deterministic. It is then not surprising that 
nowadays statistics is widely taught at different levels, due to its usefulness for the daily 
life, its instrumental role in other disciplines, and its relevance in developing critical 
reasoning. “One of the most notable achievements of western societies in the last few 
decades has been the extension of modern education, including mathematics, to a very 
substantial proportion of the population”... “It is within this context that the movement for 
statistics education has taken root” (Vere-Jones, 1995, p.13).  
 
Didactic materials, educational software, journals, meetings and conferences on teaching 
statistics have grown spectacularly in the past few years to fulfil the need to train a large 
number of students. This interest, however, does not just concern mathematicians, and 
considering statistics education as a sub-field of mathematics education would be too 
simple. The strong specificity of statistics education is reflected in the philosophical, ethical 
and procedural questions that are still being debated within statistics and its applications. 
Furthermore, it is clear that contributions to this field are not just received from 
mathematics teachers, but from statisticians, psychologists and teachers in other fields, who 
use statistics as an instrument. In this paper, we summarise these contributions. Given the 
limitation of space, we restrict our analysis to the teaching of statistics at University level, 
although the situation we picture here can be extended to school statistics. 

 
Teaching Statistics at University level 

Statistics is one of the most widely taught topics at University level, and many institutions 
have added in the past years the requirement of a data-oriented, or quantitative-literacy 
course in their core curriculum (Garfield, Chance & Snell, 2001). At this level, statistics is 
studied mainly as a tool to solve problems in other fields such as education, geography or 
medicine. These service courses often emphasize the teaching of formulas for calculating 
statistics (e.g. correlation coefficients or confidence intervals) without much concern 
towards the data context or interpretative activities. In other cases, the courses are over-
mathematised for these students, which often involve meeting concepts of advanced 
stochastic thinking without any prior or concurrent experience of advanced algebra or 
calculus. Moreover, although many statistics students are able to manipulate definitions and 
algorithms with apparent competence, they often lack understanding of the connections 
among the important concepts of the discipline (Schau & Mattern, 1997) and they do not 
know what statistical procedure to apply when they face a real problem of data analysis 



(Quilici & Mayer, 1996).  
Fortunately, increasingly easy access to powerful computing facilities has saved time 
previously devoted to laborious calculations and encouraged less formal, more intuitive 
approaches to statistics (Biehler, 1997; Ben-Zvi, 2000). Consequently, changes are 
recommended in statistics teaching at University level, both in course content and in the 
teaching approach: “Note carefully that is not at all clear that statistical skills in the 
traditional sense are required”...”We should ask whether traditional introductions to 
statistics for general students are too narrow” Moore (1997, p. 124). 
 
To add complexity to the situation, statistics is taught at University level by lecturers with a 
variety of backgrounds, the majority of whom are statisticians, but that also includes 
economists, health care professionals, engineers, psychologists or educators, and very 
rarely mathematicians or mathematics educators. Education is for these lecturers only a 
secondary research field. This explains the fact that, until very recently, research in 
advanced stochastic teaching and learning has not attracted mathematics educators and thus 
has had a small presence at, for example, the annual Psychology of Mathematics Education 
Conferences. However, the situation is starting to change, mainly due to the influence of 
research in psychology and to international activity, that we summarise below. 

 
Research on Advanced Stochastics 

 
Influence from Psychology 
Psychological research has shown that many adults, even those that we can consider to be 
statistically well trained, tend to make erroneous stochastic judgements in their day-to-day 
life. These errors also extend to problems solved in a teaching setting and have been widely 
documented in relation to concepts such as randomness, compound probability, association 
in contingency tables, conditional probabilities, Bayes problems and sampling (Nisbett & 
Ross, 1980; Kahneman, Slovic, & Tversky, 1982; Scholz, 1991).  
 
Starting from Simon’s theory of bounded rationality, Kahneman and his collaborators 
developed the heuristics and biases programme (Kahneman, Slovic & Tversky; 1982), 
which was the dominant paradigm for these studies in the early eighties and is still very 
influential. It assumes that people do not follow the normative mathematical rules that 
guide formal scientific inference when they make a decision under uncertainty and that, 
instead, they use more simple judgmental heuristics. Heuristics reduce the complex tasks of 
assessing probabilities and predicting values to simpler judgmental operations and are in 
general useful; however they sometimes cause serious and systematic errors and are 
resistant to change. For example in the representativeness heuristics, people tend to 
estimate the likelihood for an event based on how well it represents some aspects of the 
parent population. An associated fallacy that has been termed belief in the law of small 
numbers is the belief that even small samples should exactly reflect all the characteristics in 
the population distribution. A huge amount of research in stochastic education at both 
undergraduate and advanced level has been based on the idea of heuristics (see a summary 
in Shaughnessy, 1992). Recent research on heuristics at advanced level includes assessment 
(Hirsch & O’Donnell, 2001; Garfield, 2003), studying the effect of teaching experiments on 
the use of heuristics (e.g., Pfannkuch & Brown, 1996; Barragués, 2002), explaining 
misconceptions related to concepts such as randomness (Falk & Konold, 1997) in terms of 
heuristics or providing alternative explanations for incorrect responses to some of the tasks 
proposed in research about heuristics.  
 
The abstract–rules framework (Nisbett & Ross, 1980) assumes that people are able to 



acquire a correct statistical reasoning, and that they develop intuitive versions of abstract 
statistical rules, such as the Law of large numbers, which are well adapted to deal with a 
wide range of problems, but fail when they are applied beyond that range. These rules are 
used to solve statistical problems, when we recognise some cues in the problematic 
situation. However, the rule systems we use naturally (and that can be taught) are pragmatic 
and are induced in the process of solving recurrent everyday problems. With respect to 
training in statistical reasoning the suggestion is that “many of the inferential principles 
central to the education we are proposing can be appreciated fully only if one has been 
exposed to some elementary statistics and probability theory” (Nisbett & Ross, 1980, p. 
281). Problem solving is improved, according to these authors, when the sample space is 
clearly defined, people recognise the role of chance in the experiment, and the context 
forces the subject to think statistically. 
 
A more recent theoretical framework is the adaptive algorithms approach (Cosmides & 
Tooby, 1996; Gigerenzer, 1994). Adaptive algorithms serve to solve adaptive problems 
(such as finding food, avoiding predation or communicating) and take a long time to be 
shaped, due to natural selection. Since their natural environments shape adaptive algorithms 
they are more effective when the tasks are presented in a format close to how data are 
perceived and remembered in ordinary life. According to this theory people should have 
little difficulty in solving statistical tasks if the data are presented in a natural format of 
frequencies (absolute frequencies) instead of using rates or percentages (Sedlmeier, 1999). 
Frequency representations lead to simpler algorithms that give immediate accessible 
solution to many statistical problems, while most people would be unable to use the 
complex algorithm required when information is given by fractions of percentages 
(Gigerenzer, 1994). 
 
Sedlmeier (1999) analyses and summarises recent teaching experiments carried out by 
psychologists that follow one of these theories. The results of these experiments suggest 
that statistical training is effective if students are taught to translate statistical tasks to an 
adequate format, including tree diagrams and absolute frequencies. However, learning is 
assessed through participant’s performance to tasks that are very close to those used in the 
training, so that it is difficult to evaluate the extent to which students would be able to 
transfer this knowledge to a wider type of problems. While this research provides relevant 
empirical information and potential theoretical explanations for students’ difficulties in 
advanced stochastics, there is still a large amount of work to be done by mathematics and 
statistics educators to integrate these results and use them to design and evaluate teaching 
sequences in natural settings where students are expected to meet wider curricular 
requirements.  

 
The emergence of statistics education 
Another strong influence comes from the field of statistics, where interest in education 
arose since the creation of the Education Committee by the International Statistical Institute 
(ISI) at a time where underlying concern for both the ISI and the United Nations was the 
need for better statistical information from the developing countries (Vere-Jones, 1995).  
 
The ISI started to pay more attention to teaching statistics in schools since the mid 
seventies, where socio-economic conditions in developed countries, frequent use of 
quantitative information in newspapers and more widespread use of personal computers 
lead to increasing demand of statistics education for the general citizen. The International 
Conferences on Teaching Statistics (ICOTS) were started in 1982 by the ISI to bring 
together statistics teachers at all levels, disciplines and countries and have continued every 



four years. These conferences were complemented with a series of Round Table 
Conferences focussed on specific themes. In 1991 the International Association for 
Statistics Education (IASE) was created as a separate section of the ISI and took over the 
organisation of the ICOTS, starting in 1994 and the Round Tables conferences on specific 
topics: Introducing Data Analysis in the Schools (Pereira- Mendoza, 1993), Role of 
Technology in Teaching and Learning Statistics (Garfield & Burrill, 1997), Training 
Researchers in the Use of Statistics (Batanero, 2001) and Curricular Development in 
Statistics (in 2004, the proceedings are still in preparation). 
 
The journals Teaching Statistics first published in 1979 and Journal of Statistics Education, 
started in 1993, soon became main tools to improve statistics education all over the world. 
This activity was complemented with stochastics working or discussion groups at the 
International Conferences on Mathematics Education, the Psychology of Mathematics 
Education Conferences, and in the European, Latin American, Australasian and other 
regional conferences in Mathematics Education as well as by the Stochastic Thinking 
Reasoning and Literacy Research Forum started in 1999. The research approach of 
mathematics educators is far different from that taken by psychologists. On one hand the 
mathematical and epistemological analyses reveal that the complexity of concepts, tasks 
and students’ responses investigated by the psychologists is often greater than the 
psychological research assumes, and suggests the need for re-analysing them from a 
mathematical perspective. On the other hand, cantering on isolated types of tasks does not 
always reveal in depth the students’ understanding of a concept, since responses are 
sometimes very dependent on the task variables. Theoretical constructs taken from 
mathematics education also contribute to a different perspective of the same phenomena. 
 
Moreover, although many different theoretical concepts are taken from psychology or 
mathematics education, some statisticians are trying to develop specific frameworks to 
describe statistical thinking. The most influential example is the theoretical framework 
developed by Wild and Pfannkuch (1999) to “investigate the complex thought processes 
involved in solving real world problems using statistics with a view to improving such 
problem solving” (p. 224). The authors developed a complex four-dimensional framework 
including four components. The first component is termed the statistical investigation cycle 
PPDAC (Problem, Planning, Data, Analysis, Conclusion); secondly there is an 
interrogative cycle, the third component in the model describes the types of thinking, 
present in statistical problem solving and finally the model describes a series of 
dispositions, such as curiosity, imagination or scepticism. 
 
A consequence of all the above activity was the publication of a big and varied number of 
teaching experiences and suggestions. Research in advanced stochastics is also starting to 
progressively grow under the influence of the IASE and of several funded projects and 
initiatives by the American Statistical Association (e.g. the Undergraduate Statistics 
Education Initiative (USEI) and the Consortium for the Advancement of Undergraduate 
Statistics Education (CAUSE)). Although this research follows a variety of approaches, 
some research agendas (e.g. Shaughnessy, 1992; Shaughnessy, Garfield & Greer, 1996; 
Batanero, Garfield, Ottaviani & Truran, 2000), as well as the creation of Statistics 
Education Research Journal with the specific purpose to promote research show that 
researchers are now interested in linking the isolated pieces of research and in developing 
general principles and theoretical knowledge in order to conduct quality research in 
statistical education. 

  



Recent Research in Specific Concepts 
To follow I have described some examples of this type of research concerning particular 
advanced stochastics topics. Additional research suggests that misconceptions and learning 
difficulties as regards statistical concepts taught at secondary school level still persist at 
University level. Some examples are randomness (Falk & Konold, 1997), probability 
(Pfannkuch & Brown, 1996; Hirsch & O’Donnell, 2001), average and variation (Noss, 
Hoyles & Pozzi, 1999) and comparing samples (Estepa, Batanero, & Sanchez, 1999). In 
other cases research has focussed on describing the effect of new teaching methodologies in 
improving the general performance in the introductory statistics course at university level 
(Keeler & Steinhorst, 1995; Schuyten, Dekeyser & Goemine, 1999 and different papers at 
ICOTS conferences), students’  perception of statistics (Reid & Petocz, 2002), their ability 
to identify which statistical procedure is adequate to answer a research question (Quilici, & 
Mayer, 1996; Gadner & Hudson, 1999) or developing test instruments to simultaneously 
assess a variety of misconceptions (Garfield, 1998, 2003; Hirsch & O’Donnell, 2001). 

 
Association and correlation 
The perception of co variation between stimuli, behaviour and outcomes is a main 
component of human adaptable behaviour, and this explains the interest towards association 
from clinical, social and development psychologists. Inhelder and Piaget (1955) considered 
that the evolutionary development of the concepts of correlation and probability are related, 
and that understanding correlation requires prior comprehension of proportionality, 
probability, and combinatorics. Inhelder and Piaget’s research on the development of the 
idea of correlation was carried out with adolescents (12-15 year olds), and after them, most 
research in psychology has focussed on undergraduates and suggests that adult reasoning 
on association is, as a rule, very poor (Nisbett & Ross, 1980). In these experiments subjects 
are presented two-way tables consisting of two rows and two columns where a sample of 
subjects is classified according to the presence/absence of two qualitative attributes, such as 
eye and hair colour (dark or fair hair, dark or blue eyes). Subjects are asked to judge if there 
is relationship between the two attributes (i.e. judgement of correlation) in these 2x2 
contingency tables and to justify the procedure to reach their conclusion. In Table 1 we 
describe the data in this type of problem, where a, b, c and d represent absolute frequencies. 

 
Table 1. Data in a 2x2 Contingency Table 
 B Not B Total 

A a b a+b 
Not A c d c+d 
Total a+c b+d A+b+c+d 

 
Inhelder and Piaget found that some adolescents who are able to compute single 
probabilities only analyse the cases in cell [a] in Table 1 (presence-presence of the two 
characteristics A and B). When they admit that the cases in cell [d] (absence-absence) are 
also related to the existence of correlation, they do not understand that cells [a] and [d] have 
the same meaning concerning the association, and they only compare [a] with [b] or [c] 
with [d] instead. The correct strategy should use the comparison of two probabilities P(B|A) 
and P(B|NotA), and, according to Piaget and Inhelder, recognition of this fact only happens 
at 15 years of age. Following Piaget and Inhelder, several psychologists have studied the 
judgement of association in adults, using various kinds of tasks. Association judgement is 
very poor in general and is influenced by the data format, strength of correlation and 
previous theories or expectations (see Beyth-Maron, 1982, for a survey).  
 



Estepa and his collaborators started from these results, and, after a mathematical and 
epistemological analysis of the concept of correlation, designed a questionnaire including a 
variety of open-ended tasks to give an alternative explanation of pre-university students’ 
strategies and judgments in terms of misconceptions regarding correlation (Estepa, 1993; 
Batanero, Estepa, Godino and Green, 1996). In the determinist conception of association, 
some students expect that correlated variables should be linked by a mathematical function; 
students with unidirectional conception of association only perceive direct association 
(positive sign of the correlation coefficient), and interpret inverse association (negative 
sign) as independence; causal conception consists of assuming that correlation always 
involves a cause and effect relationship between the variables; and in the local conception 
subjects base their judgment on only part of the data (e.g. they only use one cell in 2x2 
contingency tables). These conceptions have been confirmed in later research (Morris, 
1997; 1999).  
 
Estepa and colleagues organised two teaching experiments based on computers and found 
general improvement in students’ strategies and conceptions after teaching, although the 
unidirectional and causal misconceptions concerning statistical association were harder to 
eradicate. Using qualitative methods, such as observation, interviews and the analysis of the 
students’ interaction with the computer, they documented specific acts of understanding of 
correlation (Estepa, 1993; Batanero, Godino, & Estepa, 1998). For example, the study of 
the association between two variables has to be made in terms of relative frequencies; 
however, in the first teaching session the students tried to solve the problems in terms of 
absolute frequencies. Although the lecturer pointed out this mistake to them at the end of 
that session, the same incorrect procedure appeared recurrently from the same students 
through several sessions, until the students eventually overcame this difficulty.  
 
More detailed analysis of the undergraduates’ students understanding of correlation and 
regression was carried out by Sánchez (1999) who found difficulties in translating between 
the different representations of correlation (verbal description, table, scatter plot and 
correlation coefficient), and in computing and interpreting the two regression lines. Later 
Estepa and Sánchez (2001) described students’ difficulties in relating the ideas of linear 
regression, correlation coefficient and covariance lack of distinction between 
interdependence and unilateral dependence, problems in adequately choosing the dependent 
and independent variables; and excessive emphasis on linear dependence.  

 
Probability distributions 
One main difficulty in teaching a statistics course at university level is making the 
transition from data analysis to statistical inference. In order to make this transition, 
students are introduced to probability distributions, with most of the emphasis being placed 
on the normal distribution. Wilensky (1995, 1997) examined student behaviour when 
solving problems involving the normal distribution. He defined epistemological anxiety as 
the feeling of confusion and indecision that students experience when faced with the 
different paths for solving a problem. In interviews with students and professionals with 
statistical knowledge, Wilensky asked them to solve a problem by using computer 
simulation. Although most subjects in his research could solve problems related to the 
normal distribution, they were unable to justify the use of the normal distribution instead of 
another concept or distribution, and showed a high epistemological anxiety.  
 
Batanero, Tauber and Sánchez (2004) organised a teaching experiment based on the use of 
computers, which was based on a theoretical framework on the meaning and understanding 
of mathematical objects (Godino & Batanero, 1998, Godino, 2002). In this model, the 



meaning (understanding) of the normal distribution (or other mathematical object) is 
conceived as a complex system, which contains different types of elements, including 
problems and situations from which the object emerges; representations of data and 
concepts, procedures and strategies to solve the problem; definitions and properties of the 
concepts, arguments and proofs. The setting of this study was an elective, introductory 
statistics course offered by the Faculty of Education, University of Granada. Taking the 
course were 117 students (divided into 4 groups), most of whom were majoring in 
Pedagogy or Business Studies. The instruction for the topic of normal distributions was 
designed to take into account the different elements of meaning as just described, which 
were identified by a previous analysis of University textbooks and the changes involved in 
the same by the use of computer. This helped to define the institutional meaning intended 
for the normal distribution in the teaching experience, which was observed and analysed in 
detail by the authors, including the written responses of students to selected tasks carried 
out throughout the teaching. 
 
At the end of the course students were given written questionnaires as well as some open-
ended tasks to be solved with the use of computers. In working on these tasks students were 
provided with a new data file which included two variables for which the normal 
distribution provided a good fit and other variables for which this was not the case. Each 
student worked individually with statistical software and produced a written report that 
included all the tables and graphs needed to support their responses. Students were 
encouraged to give detailed reasoning. The researchers expected the students to analyse the 
different variables in the data file, to use different software options and approaches to check 
the properties of the different variables, and hence determine which variable would best 
approximate a normal distribution. However, only a moderate percentage (49%) of students 
selected one of the variables that fitted a normal distribution. Qualitative analyses of 
responses to the questionnaire, qualitative analysis of written protocols as well as 
interviews with a small number of students, were used to describe the main tendencies in 
the students’ personal meaning for the normal distribution after the instruction, and to 
identify main agreements and differences with the intended institutional meaning. This 
included properties assigned by the students to the normal distribution and related concepts, 
performance in computing algorithms and procedures, including the use of software, 
understanding of representations, and ability to develop a sound argumentation, as well as 
errors and semiotic conflicts related to all these elements. 

 
Sampling distributions 
Much of inferential reasoning combines ideas about samples and sampling distributions, a 
theme where many erroneous judgment and inadequate heuristics were discovered in early 
psychological research following the pioneer work by Kahnenam, Slovic and Tversky 
(1982). More recent research has focussed on students’ understanding and tried to improve 
this understanding in different teaching experiments, often based on the use of computers. 
Sampling distributions are complex to understand as they require the integration of 
conceptual knowledge about probability, variability, sampling, random variables and the 
normal distribution. Although all these contents are taught at the introductory course, and 
many university students are able to apply  each of these concepts, they often lack the 
ability to integrate all these ideas and apply them in inferential reasoning. 
 
Well, Pollatsek and Boyce (1990) discovered that university students seem to understand 
that the means of larger samples are more likely to resemble the population mean. 
However, they do not understand the implications of this fact for the variability of the 
sample mean. Recognition that the estimates of a population parameter will vary and that 



this variation will conform to a predictable pattern was not understood by university 
students in the research of Rubin, Bruce and Tenney (1991) either. Interviews and cluster 
analysis helped Finch (1998) to identify different types of understanding of the law of large 
numbers, including students who reverted the relationships (assuming the variance of 
estimation increases with the sample size), understanding the decreasing of variance with 
sample size as explained with changes in the distribution and giving multiple meanings to 
the Law of large numbers. Lipson (1994) analysed the potential offered by computers to 
teach sampling distributions and in a later study (Lipson, 1977) she used concept maps as 
pre-test and post test and found that students’ participation in computer simulation activities 
was associated with a growth in their understanding of sampling distribution, including the 
idea that the sampling distribution is characterised by shape, centre and spread, and that the 
sample statistics can be used to estimate the population parameter.  
 
Garfield, del Mas and Chance (1997), developed a simulation software and instructional 
and assessment materials to guide students’ exploration and discovery of sampling 
distributions. The software allowed students to specify and change the shape of the 
distribution for a random variable in a theoretical population, simulate sampling for 
different sampling sizes of that population, and experimentally get the empirical sampling 
distributions for different parameters. They also designed diagnostic test- items to assess 
students’ understanding of elemental sampling concepts. Later (delMas, Garfield & 
Chance, 1999) the authors carried out a teaching experiment with three groups of students 
at the University introductory level, and used the data collected to improve the teaching 
approach, materials and assessment instruments. They were surprised that after the first 
series of experiments many of their students still showed serious misconceptions about 
sampling distribution. For example, the variability they expected in the distribution was not 
consistent with the sample size and they did not understand that the sampling distribution 
would resemble a normal distribution with increasing sample sizes. Much better results 
were obtained when they tried a model of learning through conceptual change where 141 
students were asked to test their predictions and confront their misconceptions, following a 
constructivist model or learning. The authors concluded that students with misconceptions 
have to experience contradictory evidence and take note of this contradiction with their 
previous expectations before they change their views about random phenomena. 

 
Some Priority Areas For Research In Advanced Stochastics 

The above overview suggests that probability and statistics pose important challenges to 
research in the area of advanced mathematical thinking. Existing research has been carried 
out by different scientific communities, not just by mathematics educators, and for this 
reason the sources of information are very widely spread and not always easily available. 
At the same time, the diversity of research problems and approaches is very wide, 
something which is also the case for undergraduate stochastics. ”At first sight statistical 
education might seem a rather narrow topic”...”a closer look, however, reveals  that just 
the opposite may be closer to the truth”...”the last 50 years have seen statistical education 
grow from a narrow focus on training professional stand to a movement that stretches 
downward into the primary and even the kindergarten programme and outwards, through 
the training for a wide range of academic and technical disciplines” (Vere-Jones, 1995, p. 
16). 
 
Given the changes implied by technology on the practice and meaning of statistics, 
Shaughnessy, Garfield and Greer (1996) suggested we should focus our research on the 
influence of technology on the teaching and learning of statistics, including case studies to 
document students’ learning as well as analysing teachers’ professional development. More 



specifically Rossman (1997) identified correlation, sampling distribution and confidence 
intervals as three priority particular research areas, since they are fundamental ideas whose 
understanding can be enhanced with the help of technology. Their suggestions are still 
applicable to the particular case of advanced stochastics, where the wide current number of 
statistical procedures taught at University level and the scarce previous research makes it 
difficult to select a few priority areas for didactical research. To follow I have 
complemented these research agendas with a few suggestions.  

 
Hypothesis testing and Bayesian inference 
Misconceptions in statistics does not just affect students or people with poor statistical 
training, Psychological and educational research has shown widespread misconceptions 
among scientists who use statistical inference in their daily work, including those who 
received a previous statistical training (see Harlow, Mulaik & Steiger, 1997 for a summary 
of misuses and abuses of statistical inference). These errors concern particularly the test of 
hypotheses and lead to a paradoxical situation, where, on one hand, a significant result is 
required to get a paper published in many journals and, on the other hand, significant 
results are misinterpreted in these publications (Falk& Greenbaum, 1995; Lecoutre & 
Lecoutre, 2001). 
 
A particularly misunderstood concept is the level of significance, α, which is defined as the 
probability of rejecting a null hypothesis, given that it is true. The most common 
misinterpretation of this concept consists of switching the two terms in the conditional 
probability, that is, interpreting the level of significance as the probability that the null 
hypothesis is true, once the decision to reject it has been taken. For example, Birnbaum 
(1982) reported that his students found the following definition reasonable: "A level of 
significance of 5% means that, on average, 5 out of every 100 times we reject the null 
hypothesis, we will be wrong". Falk (1986) found that most of her students believed that α 
was the probability of being wrong when rejecting the null hypothesis at a significance 
level α. Similar results were found by Vallecillos (1994) in 436 University students from 
different backgrounds (statistics, medicine, psychology, engineering and business studies) 
and Krauss and Wassner (2002) in University lecturers involved in the teaching of research 
methods. More specifically they found that 4 out of every 5 methodology instructors have 
misconceptions about the concept of significance, just like their students. The level of 
significance is not the only concept misunderstood in significance testing, but there is also 
confusion between the roles of the null and alternative hypotheses (Vallecillos, 1994, 1995) 
as well as between the statistical alternative hypothesis and the research hypothesis (Chow, 
1996).  
 
The wide research on students’ and professionals’ misunderstanding and misuse of 
statistical tests has not been followed by related efforts in designing and evaluating 
teaching experiments oriented to help students and researchers overcome these difficulties. 
Recomendations to substitute or complement statistical tests with confidence intervals (e.g. 
Wilkinson, 1999) do not take into account the fact that their appealing feature is based on a 
fundamental misunderstanding (Lecoutre, 1998), which consists of thinking of the 
parameters as random variables and assuming that confidence intervals contain the 
parameters with a specified probability.  
 
Bayes’ thinking is more intuitive than the frequentist probability for students and reflects 
their everyday thinking about uncertainty better. It is for this reason that some researchers 
(e.g. Lecoutre & Lecoutre, 2001) are suggesting changing the practice and teaching of 



statistics towards Bayesian methods. However, although there is an increasing number of 
publications about how best introduce Bayesian concepts to students coming from non 
scientific specialities (e. g. Berry, 1997, Albert & Rossman, 2001) reported results from 
experiments or research focussed on teaching Bayesian statistics are very limited. 
Moreover, some experiences reported suggest that students can make mistakes in 
interpreting their inferential results or in specifying their prior distributions (Albert, 2000).  
Given the relevance of a correct understanding and application of statistical inference to 
improve empirical research (including research in mathematics education) this is a possible 
area where research is an urgent need. Both the teaching of classical and inferential 
statistics are clear priority areas for further research in advanced stochastics. 

 
Different orientation for different students 
On the other hand, the influences from different philosophical views about randomness, 
probability and statistical inference are still reflected in stochastics teaching and research: 
“in the field of probability there continues an ongoing fierce debate on the foundations, 
even though for pragmatic reasons only, this debate has calmed down in recent times” 
(Borovcnik & Peard, 1996, p.239). These conceptions influence changes in the role given 
to probability within the curriculum, from being the central core to trying to teach statistics 
without resort to probability (focus on exploratory data analysis only) or favouring 
classical, Bayesian, computer-intensive (resampling methods) or mathematical-abstract 
approaches to inference. However, there is no consensus about which of these approaches is 
better suited for a particular type of student or which are best ways to introduce a given 
approach. We need to find which approach is needed for each type of student and which are 
the best ways to introduce a given approach. 
 
In spite of our efforts intuitions do not progress with teaching and misconceptions remain 
after formal training in statistics. We should concentrate on clarifying why current teaching 
of statistics does not improve stochastics intuition and think of some alternative ways, for 
example including some elements of psychology or philosophy in this teaching. “In any 
case statistics should be taught in conjunction with material on intuitive strategies and 
inferential errors”... “It seems to us that this would have the advantages both of clarifying 
the underlying principles of statistics and probability and of facilitating an appreciation of 
their applications to concrete judgmental tasks” (Nisbett & Ross, 1980, p.281). 

 
Web based teaching  
Advances in technology and increasing student enrolment numbers have led many 
universities to offer on-line courses although few studies have compared online and 
traditional methods of teaching of advanced statistics and results are inconclusive. While 
Hilton & Christensen (2002) evaluated the impact of incorporating multimedia 
presentations into the traditional lecture format and found that it did not improve student’s 
learning or attitudes, Utts et al., (2003) found that students in a traditional and mixed setting 
(using Internet and traditional teaching) had similar performance. At the IASE Satellite 
Conference on Statistics Education and the Internet, most presentations focussed on 
analysing Internet resources for teaching statistics or presenting examples of these 
resources.  
 
Theoretical frameworks that take into account the new meanings of statistical concepts in 
virtual environments and research methods that are useful to analyse the enormous amount 
of information generated in the interaction between students and teacher in such as 
environment are an urgent need. Given the increasing access of students to virtual learning 
and the extensive and varied resources available there is a need to analyse how the meaning 



of statistics concepts is affected by these resources and how can we incorporate them in the 
teaching both in group and individual learning. 

 
The nature of advanced stochastics 
Whilst in other areas of mathematics the boundaries between elementary and advanced 
thinking are reasonably well defined, such a distinction is much more fuzzy in the case of 
stochastics, where current secondary school curricula in many countries include ideas about 
association and inference. Also, situations which require mature stochastic thinking for 
correct interpretation, such as voting, investment, research planning or quality control 
increasingly form part of the information to which many citizens and professionals are 
exposed. So, while advanced mathematical thinking tends to be used only in a formal way 
and after some systematic training, advanced stochastic thinking is now being formally or 
informally used by many people with little formal training in either mathematics or 
stochastics.  
 
Moreover some apparently simple concepts, such as randomness, independence and 
variation are complex because each of them describes a separate continuum, are 
interconnected and usually are taken for granted in teaching (Gal, in press). For example, 
judging whether a sequence of outcomes is likely to have been randomly generated 
involves being able to measure a number of parameters including relative frequency, length 
and distribution of runs, variation found in subsets, estimating probabilities, etc. 
Furthermore, since no random sequence of outcomes exactly fits the expected patterns 
suggested by probability theory, judging randomness in a particular situation also requires 
an understanding of the logic of hypothesis testing and the features of sampling 
distributions. These are both advanced stochastic ideas where students have many 
difficulties, and whose understanding, in turn, actually rests on the idea of randomness (and 
we have thus a circular situation).  
 
We therefore need to reflect on the exact amount of formalism needed to teach these 
concepts and what the best way to use computers to help us in this teaching is In this sense, 
research in statistics and probability can be paradigmatic for finding ways and approaches 
to introduce advanced mathematical ideas to wider audiences, and to rethink the very 
meaning of what is advanced mathematical thinking. 
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